PITTSGROVE TOWNSHIP SCHOOL DISTRICT

Pittsgrove Township School District
 P.R.I.D.E. Patience Respect Integrity Diligence Empathy

Course Name: Algebra II CP	Grade Level(s): 10, 11, 12
Department: Math	Credits: 5
BOE Adoption Date: July 2013	Revision Date(s): August 2019

Course Description

This course provides continued work with variables and polynomials, solving exponential, quadratic and rational equations and inequalities, graphing, and introduces the student to radicals, complex numbers, and logarithms. Emphasis is on problem solving. Class work will include presentation of course material by the instructor, accompanied by appropriate problem solving assignments.

The following practices rest on important "processes and proficiencies" with longstanding importance in mathematics education.

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Mission Statement

The Pittsgrove Township School District believes in growing all learners to thrive. The district offers an intellectually rigorous, dynamic curriculum aligned to state and national standards coupled with research-based practices in classrooms. The Pittsgrove Township School District strives to highlight critical thinking, problem-solving, intercultural literacy, digital literacy, collaboration, innovation, and a growth mindset as part of the instructional core of learning. The district provides high quality resources to provide young people the knowledge they need to approach the future as leaders and learners.

Curriculum \& Instruction Goals

1. To ensure students are college and career ready upon graduation
2. To vertically and horizontally align curriculum PreK-12 to ensure successful transition of students at each grade level
3. To identify individual student strengths and weaknesses utilizing various assessment measures (formative, summative, alternative, etc.) so as to differentiate instruction while meeting the rigor of the applicable content standards
4. To improve student achievement as assessed through multiple measures including, but not limited to, state testing, local assessments, and ongoing progress monitoring

How to Read this Document

This curricular document contains both a pacing guide and curriculum units. The pacing guide serves to communicate an estimated timeframe as to when critical knowledge and skills will be taught throughout the year. The pacing, however, may differ slightly depending upon the unique needs of each learner. The curriculum units contain more detailed information as to the content, goals, objectives, instructional strategies, resources, and assessments.

NJ Administrative Code and Statutes Key

```
^=Amistad Law
O=Diversity & Inclusion Law
<>=Holocaust
+=LGBT and Disabilities Law
*=AAPI (Asian American and Pacific Islanders)
$=Financial Literacy
Use this key to understand where the NJ mandates are being implemented in the K-12 curriculum units.
```


Pacing Guide

Course Title: CP Algebra 2

Prerequisite(s): Algebra 1

Unit Title	Duration/ Month(s)	Related Standards	Learning Goals	Critical Knowledge and Skills
Unit 1: Quadratic Functions	September/Febr uary Length: 3 weeks	Subject Area: Mathematics NJSLS.F.IF.7A NJSLS.A.SSE.3A NJSLS.A.REI.4B NJSLS.N.CN. 2 NJSLS.A.REI.4A Mathematical Practices: MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8	The students will be able to graph quadratic functions written in standard form, vertex form, or intercept form. The students will be able to solve a quadratic equation using a variety of methods and will be able to recognize when the solutions are complex. (The methods include factoring, finding square roots, completing the square, and using the quadratic formula). The students will be able to perform arithmetic operations with complex numbers.	Learning objectives for this Unit: - To graph quadratic functions in standard form, vertex form, and intercept form - To factor binomials and trinomials, including special quadratic expressions - To solve quadratic equations by factoring and by finding square roots - To add, subtract, and multiply complex numbers - To solve equations and rewrite functions by completing the square - To solve equations using the quadratic formula - To determine the type of solutions by using the discriminant

Unit 2: Polynomials and Polynomial Functions	October/March Length: 3 weeks	Subject Area: Mathematics NJSLS.N.RN. 1 NJSLS.F.IF.7C NJSLS.A.APR. 1 NJSLS.A.SSE. 2 NJSLS.A.APR. 2 NJSLS.N.CN. 9 Mathematical Practices MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8	The students will apply properties of exponents as they simplify expressions involving powers. The students will perform arithmetic operations on polynomials and complex numbers. The students will understand the relationship between zeros and factors of polynomials by using the remainder theorem and the fundamental theorem of algebra. The students will be able to identify the zeros of polynomials and use the zeros to construct a rough graph of the function it represents.	Learning objectives for this Unit: - To use properties of exponents - To classify polynomials - To write a polynomial function from its zeros - To divide polynomials using long and synthetic division - To solve polynomial equations by graphing and factoring - To solve polynomial equations using the Rational Root Theorem - To use the Fundamental Theorem of Algebra to find all of the zeros of a polynomial function
Unit 3: Rational Exponents and Radical Functions	November/April Length: 3 weeks	Subject Area: Mathematics NJSLS.N.RN. 1 NJSLS.N.RN. 2 NJSLS.F.BF. 1 NJSLS.F.BF. 4 NJSLS.F.IF.7B NJSLS.A.REI. 2 Mathematical Practices MP1 MP6	The students will be able to extend the properties of exponents to rational exponents. The students will be able to combine standard function types using arithmetic operations, including composition. The students will know how to determine whether a given function has an inverse that is also a	Learning objectives for this Unit: - To simplify and evaluate nth roots - To apply properties of rational exponents - To perform function operations and composition - To determine if a function has an inverse function - To graph square roots and cube roots - To solve radical equations

		MP7	function. The students will be able to graph square roots and cube root functions. The students will be able to solve radical and rational equations in one variable, and give examples showing how extraneous solutions may arise.	
Unit 4: Exponential and Logarithmic Functions	December/May Length: 2-2.5 weeks	Subject Area: Mathematics NJSLS.A.SSE.B. 3 NJSLS.F.LE.A. 4 NJSLS.F.IF.C. 8 NJSLS.F.BF.B. 4 NJSLS.F.BF.B. 5 NJSLS.F.LE.B. 5 Mathematical Practices MP4 MP5 MP6 MP7	The students will be able to use the properties of exponents to transform expressions for exponential functions. The students will understand the inverse relationship between exponents and logarithms and use this relationship to solve problems.	Learning objectives for this Unit: - To graph exponential functions - To solve exponential equations - To evaluate logarithmic expressions - To simplify and evaluate expressions using the properties of logarithms - To solve logarithmic equations using the properties - To solve exponential equations using common logarithms - To evaluate logarithmic expressions using the change of base formula
Unit 5: Rational	January/June	Subject Area:	The students will write and use	Learning objectives for this Unit:

Functions	Length: 2-3 weeks	Mathematics NJSLS.A.APR.D. 7 NJSLS.F.IF.7D NJSLS.F.IF. 9 NJSLS.A.REI. 2 Mathematical Practices: MP4 MP5 MP6 MP7	models for inverse variation, direct variation, and joint variation. The students will graph rational functions, multiply, divide, add, and subtract rational expressions, and simplify complex fractions. The students will solve rational expressions.	- Model inverse, direct, and joint variation - Graph rational functions - Multiply, Divide, Add, and Subtract rational expressions - Solve rational equations

Instructional Unit Map			
Course Title: Algebra II			
Unit Title	Quadratic Functions \& Factoring		Start Date: September/February Length of Unit: 3 weeks
Content Standards What do we want them to know, understand, \& do?	NJSLS.F.IF.7A - Graph linear and quadratic functions and show intercepts, maxima, and minima. NJSLS.A.SSE.3A - Factor a quadratic expression to reveal the zeros of the function it defines. NJSLS.A.REI.4B - Solve quadratic equations by inspection (e.g., for $\times 2=$ 49), taking square roots, completing the square, the quadratic formula and	Learning Goals	The students will be able to graph quadratic functions written in standard form, vertex form, or intercept form. The students will be able to solve a quadratic equation using a variety of methods and will be able to recognize when the solutions are complex. (The methods include factoring, finding square roots, completing the square, and using the quadratic formula). The students will be able to perform arithmetic operations with complex numbers.

	classwork assignment - Verbally check for understanding - Class Participation - Teacher observation	- Chapte - Real-Li	ications	Functions Menu Project Alternative Chapter 1 Assessment
Unit Pre-Assessment(s) What do they already know?	- Warm-Up Chapter 1 Pre-Assessment (Algebra II Textbook) - Teacher-generated warm-up questions			
Instructional Strategies/Student Activities	- Direct Instruction - Note-taking sheet - Guided Practice - Cooperative Learning (group work) - Modeling - Learning Stations - Differential Learning Activities (Ex: Scavenger Hunts, Color-by-Numbers, Mazes, Etc.)			
Instructional/Assessment Scaffolds (Modifications /Accommodations) - planned for prior to instruction	English Language Learners Special Education Learners		Struggling Learners	Advanced Learners
	- Oral Directions (repeat if necessary) - Strategies for Reading Mathematics - Highlight keywords in directions or word problems	- Oral Directions (repeat if necessary) - Preferred Seating - Calculator - Complete set of notes (if needed)	- Manipulatives - Group work - Calculators - Provide examples - Guided practice worksheets with work shown - Test corrections (when needed) - Small group work with	- Tiered classwork assignments - Flexible grouping - Independent study (with teacher guidance when needed)

	- Preferred Seating - Calculator - Complete set of notes (if needed) - Manipulatives - Test retakes	- Key terms, formulas, equations highlighted - Manipulativ es - Test retakes - Extra time - Modified testing (if needed)	the teacher - Provide study guides	
Differentiated Instructional Methods: (Multiple means for students to access content and multiple modes for student to express understanding)	Access (Resources and/or Process)		Expression (Products and/or Performance)	
	- Note-taking sheet - Standard-aligned Stations/Activities - Targeted Lessons	ning on progress	- Challenge/application	ples
Vocabulary Highlight key vocabulary (both Tier II and Tier III words)	Tier II: graph, write, solve, operations, minimum, maximum Tier III: parabola, vertex form, intercept form, standard form of a quadratic function, quadratic equation, root of an equation, zero of a function, square root, complex number, imaginary number, completing the square, quadratic formula, discriminant			
Integration of Technology SAMR	S : Google Classroom Assignments A and M: Desmos.com S, A, and M: Khan Academy S: Graphing Calculator			

Interdisciplinary Connections NJ Student Learning Standards	Technology: - NJSLS.8.2.12.C. 5 Create scaled engineering drawings of products both manually and digitally with materials and measurements labeled. ELA: - NJSLS.RL.11-12.4 Determine the meaning of words and phrases as they are used in the text, including figurative and connotative meanings. - NJSLSA.R1 Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text. Career Ready Practices: - CRP1 - Act as a responsible and contributing citizen and employee. - CRP2 - Apply appropriate academic and technical skills. - CRP6 - Demonstrate creativity and innovation.
21 ${ }^{\text {st }}$ Century Themes/Skills P21 Framework	Themes Skills
	- Global Awareness - Critical Thinking and Problem Solving - Life and Career Skills
Resources/Materials	Resources: - Larson Algebra 2 Textbook (Holt McDougal Common Core Edition) - Google Classroom - Teacher-generated worksheet (practice) - Teacher-generated notes - Teacherspayteachers.com (Scavenger Hunt, Maze, Matching Activity, Color-by-Number) - Khan Academy - Desmos.com

\square

Materials:

- Chromebooks
- Manipulatives

Instructional Unit Map

Course Title: Algebra II A

| | Start Date:
 Unit Title
 Polynomial Functions | Length of Unit: | 3 weeks |
| :--- | :--- | :--- | :--- | :--- |
| Content Standards
 What do we want them to know,
 understand, \& do? | NJSLS.N.RN.1 - Explain
 how the definition of the
 meaning of rational
 exponents follows from
 extending the properties
 of integer exponents to
 those values, allowing for
 a notation for radicals in | Learning Goals | The students will be able to graph quadratic functions written in
 standard form, vertex form, or intercept form. |

	terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left(^{1 / 3}\right)^{3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5. NJSLS.F.IF.7C - Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. NJSLS.A.APR. 1 - Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. NJSLS.A.SSE. 2 - Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a		The students will be able to perform arithmetic operations with complex numbers.

	classwork assignmen - Verbally check for understanding - Class Participation - Teacher observation	- Chapte		Math Journal \& Multi-Step Problem
Unit Pre-Assessment(s) What do they already know?	- Warm-Up Chapter 2 Pre-Assessment (Algebra II Textbook) - Teacher-generated warm-up questions			
Instructional Strategies/Student Activities	- Introduction to Graphing Polynomial Functions Activity - Direct Instruction - Note-taking sheet - Guided Practice - Modeling - Cooperative Learning (group work) - Differential Learning Activities (Ex: Scavenger Hunts, Stations, etc.)			
Instructional/Assessment Scaffolds (Modifications /Accommodations) - planned for prior to instruction	English Language Learners	Special Education Learners	Struggling Learners	Advanced Learners
	- Oral Directions (repeat if necessary) - Strategies for Reading Mathematics - Graphic organizers for key objectives in this unit - One-on-one	- Oral Directions (repeat if necessary) - Preferred Seating - Calculator - Complete set of notes (if needed)	- Concrete examples and visuals of different types of graphs - Group work - Calculators - Guided practice worksheets with work shown - Test corrections (when needed)	- Flexible grouping - Independent study to discover real-world examples (with teacher guidance when needed)

	re-teaching (if needed) - Calculator - Complete set of notes (if needed) - Test retakes	- Concrete examples and visuals of different types of graphs - Manipulativ es - Test retakes - Extra time - Modified testing (if needed)	- Small group work with the teacher - Provide study guides	
Differentiated Instructional Methods: (Multiple means for students to access content and multiple modes for student to express understanding)	Access (Resources and/or Process)		Expression (Products and/or Performance)	
	- Note-taking sheet - Concrete examples - Standard-aligned Stations/Activities - Targeted Lessons	graphs ning on progress	- Real-world applications	
Vocabulary Highlight key vocabulary (both Tier II and Tier III words)	Tier II: graph, write, difference, sum, product, scientific notation, factoring, constant Tier III: polynomial, polynomial function, synthetic substitution, end behavior, like terms, factoring by grouping, quadratic form, polynomial long division, synthetic division, zero of a function, constant term, leading coefficient, irrational conjugates, complex conjugates			
Integration of Technology SAMR	S: Google Classroom Assignments A and M: Desmos.com S, A, and M: Khan Academy			

Interdisciplinary Connections NJ Student Learning Standards	Career Ready Practices: - CRP1 - Act as a responsible and contributing citizen and employee. - CRP2 - Apply appropriate academic and technical skills. - CRP11 - Use technology to enhance productivity. ELA: - NJSLSA.R1 Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it. - NJSLSA.R4 Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone. - NJSLS.RL.11-12.4 Determine the meaning of words and phrases as they are used in the text, including figurative and connotative meanings.
21 ${ }^{\text {st }}$ Century Themes/Skills P21 Framework	Themes Skills
	- Civic Literacy (explore polynomial graphs and how they relate to rollercoaster designs) - Critical Thinking and Problem Solving - Life and Career Skills - Communication \& Collaboration
Resources/Materials	Resources: - Larson Algebra 2 Textbook (Holt McDougal Common Core Edition) - Google Classroom - Teacher-generated worksheets and activities (practice, stations, etc.) - Teacher-generated notes - Teacherspayteachers.com (Scavenger Hunt) - Khan Academy - Desmos.com Materials: - Chromebooks

	- Manipulatives - Graphing Calculators			
Instructional Unit Map				
Course Title: Algebra II A				
Unit Title	Rational Exponents and Radical Functions		Start Date: Length of Unit:	November/April 3 weeks
Content Standards What do we want them to know, understand, \& do?	NJSLS.N.RN. 1 - Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left({ }^{1 / 3}\right)^{3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5. NJSLS.N.RN. 2 - Rewrite expressions involving radicals and rational exponents using the properties of exponents. NJSLS.F.BF. 1 - . Write a	Learning Goals	The students will be able to extend the properties of exponents to rational exponents. The students will be able to combine standard function types using arithmetic operations, including composition. The students will know how to determine whether a given function has an inverse that is also a function. The students will be able to graph square roots and cube root functions. The students will be able to solve radical and rational equations in one variable, and give examples showing how extraneous solutions may arise.	

	- Group work - Teacher observation			
Unit Pre-Assessment(s) What do they already know?	- Warm-Up Chapter 3 Pre-Assessment (Algebra II Textbook) - Key prerequisite vocabulary assessment			
Instructional Strategies/Student Activities	- Direct Instruction - Note-taking sheet - Guided Practice - Cooperative Learning (group work) - Learning Stations - Differential Learning Activities (Ex: Walk-Arounds, Riddles, etc.)			
Instructional/Assessment Scaffolds (Modifications /Accommodations) - planned for prior to instruction	English Language Learners	Special Education Learners	Struggling Learners	Advanced Learners
	- Oral Directions (repeat if necessary) - Strategies for Reading Mathematics - Underline/highligh t key vocabulary and instructions - Calculator - Complete set of notes (if needed) - Test retakes	- Oral Directions (repeat if necessary) - Preferred Seating - Calculator - Complete set of notes (if needed) - Manipulativ es - Learning Stations to differentiate	- Group work - Calculators - Guided practice worksheets with work shown - Test corrections (when needed) - Small group work with the teacher - Provide study guides - Additional time	- Flexible grouping to enhance learning - Solving multi-step problems - Tiered activities/assess ment

	between radical operations - Test retakes - Extra time - Modified testing (if needed)	
Differentiated Instructional Methods: (Multiple means for students to access content and multiple modes for student to express understanding)	Access (Resources and/or Process)	Expression (Products and/or Performance)
	- Guided notes - Provide list of perfect squares and cubes to aid students in simplifying radicals - Demonstrations for key concepts - Provide Khan Academy and other websites with additional examples	- Real-world applications (Compositions of Functions)
Vocabulary Highlight key vocabulary (both Tier II and Tier III words)	Tier II: indicate, evaluate, simplify, write Tier III: nth root of a, index of a radical, radicals, power function, composition, inverse relation, inverse function, radical function, parent function, radical equation, extraneous solution	
Integration of Technology SAMR	S: Google Classroom Assignments S, A, and M: Khan Academy	
Interdisciplinary Connections NJ Student Learning Standards	Career Ready Practices: - CRP2 - Apply appropriate academic and technical skills. ELA: - NJSLSA.W4 Produce clear and coherent writing in which the development, organizer, and style are	

	appropriate to task, purpose, and procedure.
$21^{\text {st }}$ Century Themes/Skills P21 Framework	Themes Skills
	- Financial Literacy (compositions of real-world applications) - Information \& Communication Technologies Literacy - Communication \& Collaboration
Resources/Materials	Resources: - Larson Algebra 2 Textbook (Holt McDougal Common Core Edition) - Google Classroom - Teacher-generated worksheets and activities (practice, stations, etc.) - Teacher-generated notes - Teacherspayteachers.com (Scavenger Hunt, riddle) - Khan Academy Materials: - Chromebooks - Manipulatives - Graphing Calculators

Instructional Unit Map

Course Title: Algebra II A

Unit Title	Exponential and Logarithmic Functions		Start Date:	December/May
			Length of Unit:	2-2.5 weeks
Content Standards What do we want them to know, understand, \& do?	NJSLS.A.SSE.B. 3 - Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. NJSLS.F.LE.A. 4 - . Understand the inverse relationship between exponents and logarithms. For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	Learning Goals	The students will be able to use the properties of exponents to transform expressions for exponential functions. The students will understand the inverse relationship between exponents and logarithms and use this relationship to solve problems.	

	NJSLS.F.IF.C. 8 - Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. NJSLS.F.BF.B. 4 - Find inverse functions. NJSLS.F.BF.B. 5 - Use the inverse relationship between exponents and logarithms to solve problems involving logarithms and exponents. NJSLS.F.LE.B. 5 - Interpret the parameters in a linear or exponential function in terms of a context.		
Essential Questions	- What is the difference between exponential growth and decay? - How are logarithms and exponents related? - How can exponential growth and decay functions be used to model real-world applications?		
Assessments How will we know they have gained the knowledge \& skills?	Formative	Summative	Alternative
	- Warm-ups/exit tickets - Graded homework and classwork assignments - Group work	- Quizzes - Chapter Test	- CSI: Algebra 2 Exponential \& Log Functions https://www.teacherspa

	- Teacher observation - Class participation			yteachers.com/Product/ CSI-Algebra-2-Pre-Calc-U nit-6-Exponential-Log-Fu nctions-757315
Unit Pre-Assessment(s) What do they already know?	- Warm-Up Chapter 4 Pre-Assessment (Algebra II Textbook) - Chapter 4 Skills Readiness practice			
Instructional Strategies/Student Activities	- Direct Instruction - Note-taking sheet - Guided Practice - Cooperative Learning (group work) - Learning Stations - Differential Learning Activities (Ex: Color-by-Number, Puzzles, CSI, Scavenger Hunt, etc.)			
Instructional/Assessment Scaffolds (Modifications /Accommodations) - planned for prior to instruction	English Language Learners	Special Education Learners	Struggling Learners	Advanced Learners
	- Oral Directions (repeat if necessary) - ELL Lesson Notes - Simplify language and present directions in bullet-point form - Calculator - Shorten assignments (if needed)	- Calculator - Complete set of notes (if needed) - Provide formula sheet to assist with switching between exponential and	- Group work - Calculators - Test corrections (when needed) - Highlight key terms/phrases in directions - Provide formula sheet to assist with switching between exponential and logarithmic forms - Provide Khan Academy	- Tiered activities and assessment

Interdisciplinary Connections NJ Student Learning Standards	Technology: - NJSLS.2.12.B. 2 Evaluate ethical considerations regarding the sustainability of environmental resources that are used for the design, creating and maintenance of a chosen product. Career Ready Practices: - CRP1 - Act as a responsible and contributing citizen and employee. - CRP2 - Apply appropriate academic and technical skills. - CRP6 - Demonstrate creativity and innovation. - CRP8 - Utilize critical thinking to make sense of problems and persevere in solving them. - CRP11 - Use technology to enhance productivity. - CRP12 - Work productively in teams while using cultural global competence. Financial Literacy: - NJSLS.9.1.12.A.9 Analyze how personal and cultural values impact spending and other financial decisions. - NJSLS.9.1.12.B. 2 Identify age appropriate financial goals. - NJSLS.9.1.12.B. 8 Develop a system for keeping and using financial records. ELA: - NJSLSA.R1 Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it. - NJSLSA.R4 Interpret words and phrases as they are used in a text, including determining technical, connotative, and figurative meanings, and analyze how specific word choices shape meaning or tone. Science: - NJSLS-S.HS-LS3-3 Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.
21 ${ }^{\text {st }}$ Century Themes/Skills P21 Framework	Themes Skills

	- Financial Literacy - Environmental Literacy - Life and Career Skills - Communication \& Collaboration - Information Literacy
Resources/Materials	Resources: - Larson Algebra 2 Textbook (Holt McDougal Common Core Edition) - Google Classroom - Teacher-generated worksheets and activities (practice, stations, etc.) - Teacher-generated notes and graphic organizer - Teacherspayteachers.com (Scavenger Hunt, CSI, Color-by-Number) - Algebra II Topics by Design - Desmos.com - Khan Academy Materials: - Chromebooks - Graphic organizer - Graphing Calculators

Instructional Unit Map
Course Title: Algebra II A

Unit Title	Rational Functions	Start Date:	January/June

Content Standards What do we want them to know, understand, \& do?	NJSLS.A.APR.D.7- Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions. NJSLS.F.IF.7D - Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. NJSLS.F.IF. 9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the	Learning Goals	The students will write and use models for inverse variation, direct variation, and joint variation. The students will graph rational functions, multiply, divide, add, and subtract rational expressions, and simplify complex fractions. The students will solve rational expressions.

	larger maximum. NJSLS.A.REI. 2 - Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.		
Essential Questions	- How is direct, inverse, and joint variation used in everyday life? - What are the steps in order to add, subtract, multiply, and divide rational expressions? Why do you need to know how to solve a rational equation?		
Assessments	Formative	Summative	Alternative
gained the knowledge \& skills?	- Warm-ups/exit tickets - Graded homework and classwork assignments - Teacher observation - Class participation - Independent work on real-world variation problems	- Quizzes - Chapter Test	- Unit Menu Activity - Creating real-world variation problems and providing answers to own problem. Have peers answer problems.
Unit Pre-Assessment(s) What do they already know?	- Warm-Up Chapter 5 Pre-Assessment (Algebra II Textbook) - Chapter 5 Skills Readiness practice		
Instructional Strategies/Student Activities	- Direct Instruction - Note-taking sheet - Modeling (applications of variations)		

Differentiated Instructional Methods: (Multiple means for students to access content and multiple modes for student to express understanding)	Access (Resources and/or Process)	Expression (Products and/or Performance)
	- Learning stations - Menu Activity - Group work	- Creation of own application problems - Solving peer-created application problems
Vocabulary Highlight key vocabulary (both Tier II and Tier III words)	Tier II: decreasing, increasing, variation Tier III: constant of variation, complex fraction, cross multiplying, even function, odd function, inverse variation, joint variation, direct variation, rational function	
Integration of Technology SAMR	S: Google Classroom Assignments S, A, and M: Khan Academy	
Interdisciplinary Connections NJ Student Learning Standards	Career Ready Practices: - CRP2 - Apply appropriate academic and technical skills. - CRP6 - Demonstrate creativity and innovation. - CRP8 - Utilize critical thinking to make sense of problems and persevere in solving them. - CRP12 - Work productively in teams while using cultural global competence.	
21 ${ }^{\text {st }}$ Century Themes/Skills P21 Framework	Themes	Skills
	- Environmental Literacy	- Life and Career Skills - Communication \& Collaboration
Resources/Materials	Resources: - Larson Algebra 2 Textbook (Holt McDougal Common Core Edition) - Google Classroom - Teacher-generated worksheets and activities (practice, stations, etc.)	

	- Teacher-generated notes - Teacherspayteachers.com (Applications, Gone Fishing (operations), etc.) - Khan Academy Materials: - Chromebooks - Smartboard (Gone Fishing) - Graphing Calculators

